

5. Environmental Analysis

5.16 UTILITIES AND SERVICE SYSTEMS

This section of the Draft Environmental Impact Report (DEIR) addresses the potential for implementation of the Rancho San Gorgonio Specific Plan to impact utility and service systems in the City of Banning and its sphere of influence (SOI). Utilities and services systems include water supply and distribution systems; wastewater (sewage) conveyance and treatment; storm drainage systems; solid waste collection and disposal services; and other public utilities. Impacts to hydrology (e.g., flooding), water quality and drainage can be found in Section 5.9, *Hydrology and Water Quality*. The analysis in this section is based, in part, upon the following technical reports:

- *Water Supply Assessment, Rancho San Gorgonio Specific Plan*, Madole & Associates and Encompass Associates, September 30, 2015.
- *Master Plan of Sewer, Rancho San Gorgonio Specific Plan*, Madole & Associates and Encompass Associates, October 20, 2015.
- *Master Plan of Water, Rancho San Gorgonio Specific Plan*, Madole & Associates and Encompass Associates, September 17, 2015.

Complete copies of these studies are included in the Technical Appendices to this Draft EIR (Volume II, Appendices J, O, and P).

Several agencies and individuals submitted Notice of Preparation (NOP) comment letters or had verbal comments during the scoping meeting addressing water supply.

Southern California Gas Company (SCGC) noted that there is an existing 36-inch high pressure natural gas transmission line that traverses the project site. Prior to construction activities, SCGC recommends the applicant call Underground Service Alert to mark the locations of buried utility lines. SCGC also states that the applicant should coordinate with SCGC if the transmission line needs to be abandoned or relocated.

Southern California Edison (SCE) noted that it operates a 115-kilovolt (kV) subtransmission line and two 500-kV transmission lines within the project area. If the development encroaches within SCE's right-of-way (ROW), the project applicant would be required to install fences or barriers near each transmission line tower. If future projects in accordance with the proposed Specific Plan require any modifications or relocations of electrical facilities that operate at or above 50 kV, the projects would be subject to CPUC's General Order 131-D1 requiring CEQA analysis of such modifications or relocations.

Individuals were concerned with the ongoing drought conditions, reliability of existing water sources, water demands, and cumulative water supply impacts. Commenters are also concerned about the project's wastewater generation and City's treatment capacity, the damaged Banning Water Canyon flume and water well near the project site; installation of recycled/reclaimed water pipes onsite; and potential for individual homeowners to convert desert landscaping into grass lawns.

5. Environmental Analysis

UTILITIES AND SERVICE SYSTEMS

5.16.1 Wastewater Treatment and Collection

5.16.1.1 ENVIRONMENTAL SETTING

Regulatory Background

Federal

Clean Water Act

The Clean Water Act (CWA) establishes regulations to control the discharge of pollutants into the waters of the United States and regulates water quality standards for surface waters. Under the CWA, the U.S. Environment Protection Agency (EPA) is authorized to set wastewater standards and runs the National Pollutant Discharge Elimination System (NPDES) permit program. Under the NPDES program, permits are required for all new developments that generate discharges that go directly into Waters of the United States. The federal Clean Water Act, United States Code, Title 33, Sections 1251 et seq., requires wastewater treatment of all effluent before it is discharged into surface waters.

Local

City of Banning Sewer System Management Plan

Per California State Water Resources Control Board Waste Discharge Order No. 2006-003-DWQ, Statewide General Waste Discharge Requirements for Sanitary Sewer Systems, the City is required to develop and implement a system-specific Sewer System Management Plan. The plan describes measures to provide effective management, operation, and maintenance of sanitary sewer systems, and provides detailed spill response plans to establish procedures for proper response and reporting. The plan also describes existing wastewater collection system operational and maintenance procedures and new programs.

City of Banning Municipal Code

The City of Banning Municipal Code identifies land use categories, development standards, and other general provisions that ensure consistency between the City's general plan and proposed development projects. The following provisions from the municipal code focus on wastewater impacts:

- **Chapter Section 13.08.060 (Sewer system connection fee).** Requires a sewer system connection fee to be paid for a new connection to the city-owned sewage system. The maximum sewer fee is \$2,786 per residential dwelling unit, plus a frontage fee of \$27.50 per foot. Commercial developments are also required to pay a sewer connection fee; the amount depends on the project type. All such revenues shall be spent on sewerage system capital improvements, including but not limited to sewer main and interceptor extensions and wastewater treatment plant expansions and upgrades.

5. Environmental Analysis UTILITIES AND SERVICE SYSTEM

Existing Conditions

Wastewater Collection

The City's Water and Wastewater Utilities Department is responsible for collecting wastewater from homes and businesses and bringing it to the Banning Wastewater Reclamation Facility (WRF) at 2242 East Charles Street in the City. The collection system includes 115 miles of gravity sewer mains, 5 miles of force mains, and 4 sewer lift stations. Sewer mains range from 4 to 30 inches in diameter (Banning 2009).

Wastewater Treatment

The Water and Wastewater Utilities Department operates the Banning Wastewater Treatment Plant (WWTP). The facility's capacity is designed to treat and average flow of 3.6 million gallons per day (mgd) and a peak flow of 7.2 mgd. Current average flows are 2.0 mgd and peak flows reach approximately 3.8 mgd (Vela 2016).

Currently, the Water and Wastewater Utilities Department has plans and is working towards expanding the Banning WWTP facility through the Banning WWTP Expansion and Phase I Recycled Water System project. The project would expand the existing facility to allow tertiary treatment of up to 5.1 mgd, install new pipelines to transport recycled water, and construct a pump station and storage reservoir for recycled water (Banning 2008). The date of project completion is unknown as of this report.

5.16.1.2 THRESHOLDS OF SIGNIFICANCE

According to Appendix G of the CEQA Guidelines, a project would normally have a significant effect on the environment if the project:

- U-1 Would exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board.
- U-2 Would require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects.
- U-5 Would result in a determination by the wastewater treatment provider which serves or may serve the project that it has inadequate capacity to serve the project's projected demand in addition to the provider's existing commitments.

5.16.1.3 ENVIRONMENTAL IMPACTS

The following impact analysis addresses thresholds of significance for which the Initial Study disclosed potentially significant impacts. The applicable thresholds are identified in brackets after the impact statement.

5. Environmental Analysis

UTILITIES AND SERVICE SYSTEMS

Impact 5.16-1: Buildout of the Specific Plan would include installation of a sewer network and an onsite wastewater treatment facility which would have sufficient capacity to treat project-generated wastewater. [Thresholds U-1, U-2 (part), and U-5]

Impact Analysis: Buildout of the Specific Plan would allow up to 3,133 residential units and 9.3 acres of commercial use, or 3,385 residential units if the PA 9 and PA 16-C are not developed as commercial or school uses, respectively, and instead are developed in accordance with their Residential Overlay Alternatives. To determine the worst case scenario, both buildout scenarios are analyzed below.

Forecast Wastewater Generation

Table 5.16-1 shows that wastewater generation under the all residential scenario (3,385 units) would generate more wastewater than the residential and commercial use scenario. Thus, the worst case scenario would generate approximately 839,138 gallons per day (gpd) during dry weather flow and 1.43 mgd during peak dry weather flow.

Table 5.16-1 Forecast Project Wastewater Generation, gallons per day

Land Use	Wastewater Generation Rates (gallons per day)	Generated Wastewater (gpd)	
		Residential + Commercial Scenario	All Residential Scenario
Residential	194 ¹ per unit	607,802	656,690
Commercial	1,500 per acre	13,950	0
Public Park/Fire Station	182,448	182,448	182,448
	Total, average dry weather flow	804,200	839,138
	Total, peak dry weather flow ²	1,367,140	1,426,535

Source: Madole and Encompass 2015.

¹ The wastewater generation factor per residential unit is based on the City's sewage flow factor of 90 gallons per capita per day for residential uses; the average of 2.7 persons per dwelling unit identified in the City's General Plan; and includes a 20 percent reduction pursuant to the 20x2020 Water Conservation Plan.

² The peak dry weather flow is 1.7 times the average dry weather flow.

Proposed Wastewater Treatment Facility

Two options are proposed for treatment of project-generated wastewater: 1) construction of a dedicated package wastewater treatment facility onsite; or 2) expansion of, or the addition of chemical treatment to, the City's existing WWTP. Expansion of the WWTP to accommodate project-generated wastewater would require a fair-share contribution by the project applicant commensurate with forecast project wastewater generation of approximately 1.43 mgd.

The project could include a package wastewater treatment facility capable of treating project-generated wastewater and designed such that it could be expanded in phases as the project is built out. The package plant would be operated and maintained by the City. The package plant would produce recycled water for use in common area irrigation throughout the proposed project, and possibly elsewhere in the City. The technology to be used in the proposed wastewater treatment plant has not yet been determined; however, a membrane bioreactor plant would be a suitable technology, as the system is fully contained; thus odor is not a concern. Sludge from the proposed wastewater treatment plant would be discharged into the project sewer system and would flow through existing sewers to the City's existing WWTP. Treated water from the

5. Environmental Analysis UTILITIES AND SERVICE SYSTEM

proposed wastewater treatment facility would be pumped into the proposed recycled water system for the project site. As detailed in Table 5.16-1, the average sewage flow from the project would be approximately 839,138 gpd. With a conservative yield of 50 percent, about 419,569 gpd of recycled water could be generated (approximately 470 acre-feet per year [afy]), which exceeds the project irrigation demand of approximately 218 afy. The excess recycled water can be passed on to the citywide recycled water system or conveyed to the City's WWTP.

A wastewater treatment facility with capacity to serve the proposed project is expected to be less than one acre in area and would be in Planning Area 16-A (see Figure 3-5, *Proposed Land Use Plan*).

Proposed Sewer System

A network of sewer mains, ranging from 8 inches to 24 inches in diameter, is proposed for the project, including mains in several proposed roadways and other proposed mains in the setback areas along Smith Creek and Pershing Creek (see Figure 3-9, *Sewer Master Plan*). The proposed sewer network would connect to an existing 21-inch sewer trunk line about 600 feet east of San Gorgonio Avenue and about 450 feet south of Wesley Avenue in the projection of Porter Street (see Figure 3-9, *Sewer Master Plan*). To connect the project would require the construction of approximately 600 feet of offsite sewer lines. Easements would need to be obtained from the properties between the project site and point of connection. The connection to an existing sewer main would be required to convey sludge to the existing wastewater treatment plant if the proposed wastewater treatment facility is taken off line or if irrigation demand does not use all of the discharge from the onsite wastewater treatment facility.

Additionally, per the City's sewer master plan, a trunk line called the "Deutsch Trunk Line" is proposed across the project site. The proposed sewer network would need to accommodate the capacity of the planned Deutsch Trunk Line into the sewerage improvements. An offset in sewer impact fees reflective of the sewer main upsizing cost would be allowed. Additional reimbursement agreements would be instituted to collect fair-share costs from future developments.

Regional Water Quality Control Board Wastewater Treatment Requirements

Project impacts to wastewater discharge requirements of the Colorado River Basin Regional Water Quality Control Board and the State Water Resources Control Board would be less than significant, as substantiated under Impact 5.9-4 in Section 5.9, *Hydrology and Water Quality*, of this DEIR.

5.16.1.4 CUMULATIVE IMPACTS

The area considered for cumulative impacts corresponds to the service boundaries of the City's Water and Wastewater Utilities Department. Many other projects in the City would increase the total development intensity in the City, thus increasing wastewater generation. For example, the related projects listed in Table 4-3 would introduce up to 6,379 residential units and 104 acres of commercial use. Using the City's wastewater generation rates, the related projects would generate approximately 1.4 million gpd of wastewater. Given that the existing wastewater treatment plant is designed to treat an average flow of 3.6 mgd and a peak flow of 7.2 mgd, adequate wastewater treatment capacity would be available for other projects.

5. Environmental Analysis

UTILITIES AND SERVICE SYSTEMS

According to the Southern California Association of Governments' 2016-2040 Regional Transportation Plan/Sustainable Communities Strategy, the City population is forecast to increase to 37,600 by 2040, a 25 percent increase over the 2012 population. The number of households is estimated to increase to 14,000, a 30 percent increase over the 2012 figure. Employment is forecast to increase to 14,200, a 95 percent increase over 2012 employment. Future projects would require installation of new sewer mains and/or replacement of existing mains with expanded mains as well as construction of new sewer laterals. Additionally, future projects, including the related projects listed in Table 4-3, would be required to pay sewer system connection fees to the City of Banning for use on sewerage system capital improvements. Payment of such fees would reduce impacts regarding wastewater treatment capacity and assist in funding future sewer installations and/or upgrades.

5.16.1.5 EXISTING REGULATIONS

Federal

- Clean Water Act

City of Banning

- Sewer System Management Plan
- Municipal Code Section 13.08.060: Sewer System Connection Fee

5.16.1.6 LEVEL OF SIGNIFICANCE BEFORE MITIGATION

Upon implementation of regulatory requirements and standard conditions of approval, the following impacts would be less than significant: 5.16-1.

5.16.1.7 MITIGATION MEASURES

Impacts would be less than significant and no mitigation is required.

5.16.1.8 LEVEL OF SIGNIFICANCE AFTER MITIGATION

Impacts would be less than significant.

5.16.2 Water Supply and Distribution Systems

5.16.2.1 ENVIRONMENTAL SETTING

Regulatory Background

State

Urban Water Management Planning Act

The Urban Water Management Planning Act of 1983, California Water Code Sections 10610 et seq., requires preparation of a plan that:

5. Environmental Analysis UTILITIES AND SERVICE SYSTEM

- Plans for water supply and assesses reliability of each source of water, over a 20-year period, in 5-year increments.
- Identifies and quantifies adequate water supplies, including recycled water, for existing and future demands, in normal, single-dry, and multiple-dry years.
- Implements conservation and the efficient use of urban water supplies. Significant new requirements for quantified demand reductions have been added by the Water Conservation Act of 2009 (Senate Bill 7 of Special Extended Session 7 [SBX7-7]), which amends the act and adds new water conservation provisions to the Water Code.

20x2020 Water Conservation Plan

The 20x2020 Water Conservation Plan, issued by the Department of Water Resources (DWR) in 2010 pursuant to SBX7-7, established a water conservation target of 20 percent reduction in water use by 2020 compared to 2005 baseline use.

Senate Bills 610 and 221

To assist water suppliers, cities, and counties in integrating water and land use planning, the state passed Senate Bill (SB) 610 (Chapter 643, Statutes of 2001) and SB 221 (Chapter 642, Statutes of 2001), effective January 1, 2002. SB 610 and SB 221 improve the link between information of water-supply availability and certain land use decisions made by cities and counties. SB 610 and SB 221 are companion measures that promote more collaborative planning between local water suppliers and cities and counties. Both statutes require detailed information regarding water availability to be provided to city and county decision makers prior to approval of specified large development projects. This detailed information must be included in the administrative record as the evidentiary basis for an approval action by the city or county on such projects. The statutes recognize local control and decision making regarding the availability of water for projects and the approval of projects. Under SB 610, water supply assessments (WSA) must be furnished to local governments for inclusion in any environmental documentation for certain projects subject to CEQA, as defined in Water Code Section 10912[a]. Under SB 221, approval by a city or county of certain residential subdivisions requires an affirmative verification of sufficient water supply. SB 221 is intended as a fail-safe to ensure collaboration on finding the needed water supplies to serve a new large subdivision before construction begins.

The Urban Water Management Planning Act states that every urban water supplier that provides water to 3,000 or more customers or provides over 3,000 afy of water should make every effort to ensure the appropriate level of reliability in its water service to meet the needs of its various categories of customers during normal, dry, and multiple dry years. Both SB 610 and SB 221 identify the urban water management plan (UWMP) as a planning document that can be used by a water supplier to meet the standards in both statutes. Thorough and complete UWMPs are foundations for water suppliers to fulfill the specific requirements of these two statutes, and they are important source documents for cities and counties as they update their general plans. Conversely, general plans are source documents as water suppliers update the

5. Environmental Analysis

UTILITIES AND SERVICE SYSTEMS

UWMPs. These planning documents are linked, and their accuracy and usefulness are interdependent (DWR 2008).

Groundwater Regulation

Three bills signed into law in September 2014—Assembly Bill 1739, Senate Bill 1168, and Senate Bill 1319—create a framework for regulating groundwater basins in California.¹ The bills establish a definition of sustainable groundwater management and require local agencies to adopt management plans for the state's most important groundwater basins. The legislation prioritizes groundwater basins that are currently overdrafted and sets a timeline for implementation:

- By 2017, local groundwater management agencies must be identified.
- By 2020, overdrafted groundwater basins must have sustainability plans.
- By 2022, other high- and medium-priority basins not currently in overdraft must have sustainability plans.
- By 2040, all high- and medium-priority groundwater basins must achieve sustainability.

Additionally, the legislation provides measurable objectives and milestones to reach sustainability and a state role of limited intervention when local agencies are unable or unwilling to adopt sustainable management plans.

Governor's Drought Declaration

California Governor Edmund Brown Jr. declared a drought state of emergency on January 17, 2014, asking Californians to voluntarily reduce water use by 20 percent. 2013 was the driest year in recorded history in many parts of California, and the extreme drought is still continuing. Between October 1, 2013, and June 30 2014, statewide precipitation was 50 percent of average, runoff was 35 percent of average, and reservoir storage 60 percent of average (DRW 2014). Initially, the DWR announced on January 31, 2014, that if current dry conditions persist, customers would receive no deliveries from the State Water Project (SWP) in 2014, except for small carryover amounts from 2013. Later, DWR increased the SWP allocation to 5 percent and deliveries would start in August 2014. Almost all areas served by the SWP also have other sources of water, such as groundwater and local reservoirs (DWR 2014). Additionally, deliveries from the Central Valley Project in 2014 were cut to zero for agriculture users south of the Sacramento-San Joaquin Delta (SRWCB 2014).

On April 1, 2015, Governor Brown issued Executive Order B-29-15, finding that, among other things, "...conditions of extreme peril to the safety of persons and property continue to exist in California due to water shortage and drought conditions..." and ordering that, among other things, the "State Water Resources Control Board shall impose restrictions to achieve a statewide 25 percent reduction in potable urban water usage through February 28, 2016."

¹ Assembly Bill 1739 is Chapter 347, Statutes of 2014; Senate Bill 1168 is 346, Statutes of 2014; and Senate Bill 1319 is Chapter 348, Statutes of 2014.

5. Environmental Analysis UTILITIES AND SERVICE SYSTEM

The City of Banning was assigned a required water use reduction of 32 percent pursuant to Executive Order B-29-15. Target residential use under the aforementioned Executive Order is 123.2 gallons per capita per day (gpcd). The following uses of potable water for irrigation are prohibited for indefinite duration:

- Use of potable water for irrigation of ornamental turf in street medians
- Use of potable water for outdoor irrigation of new home construction without drip or microspray systems.

Local

City of Banning Municipal Code

The City of Banning Municipal Code identifies land use categories, development standards, and other general provisions that ensure consistency between the City's general plan and proposed development projects. The following provisions from the City's municipal code focus on water supply impacts:

- **Section 13.08.050 (Water system connection fee).** Requires all applicants for water service to pay a water connection fee at a maximum of \$7,232 per residential dwelling unit, plus a frontage fee of \$25 per foot. Commercial developments are also required to pay a water connection fee; the amount depends on the project type, number of meters, and meter size required.
- **Chapter 13.16 (Water Conservation).** Section 13.16.010 requires the City to adopt an urban water management/conservation plan and keep it on file in the office of the city clerk. Section 13.16.020 restricts water use during water supply emergencies, and Section 13.16.030 requires all new developments to comply with water conservation provisions that use xeriscape principles such as, turf limitations, irrigation techniques, use of mulch, and water-conserving landscaping plans.

City of Banning Urban Water Management Plan 2010

The City's Urban Water Management Plan (UWMP) is required under Water Code Section 10610 through 10656 of the Urban Water Management Planning Act, effective January 1, 1984. As stated above, the act requires all urban water suppliers to prepare, adopt, and file a UWMP with the California Department of Water Resources every five years. The 2010 UWMP outlines current water demands, sources, and supply reliability to the City by forecasting water use based on climate, demographics, and land use changes within the City. The plan also provides demand management measures to increase water use efficiency for various land use types and details a water supplies contingency plan in case of shortage emergencies.

The Draft 2015 UWMP was prepared by Krieger & Stewart Engineering Consultants and recently released by the City for a 60-day review period in April 2016. The Draft 2015 UWMP is anticipated to be adopted by the City Council on June 14, 2016 and submitted to the DWR for approval before the July 1, 2016 deadline.

5. Environmental Analysis

UTILITIES AND SERVICE SYSTEMS

Existing Conditions

The information on water supplies and citywide water demands in the Water Supply Assessment (WSA) is based largely on the 2010 Urban Water Management Plan (UWMP) completed by Geoscience Inc. on July 22, 2011; amended on December 11, 2012; and approved by the Department of Water Resources (DWR) on July 1, 2013. As previously stated, the Draft 2015 UWMP has not been adopted and approved by the City Council and DWR yet. Therefore, this section relies on the aforementioned WSA and 2010 UWMP data. However, the WSA will be reevaluated and revised as necessary upon approval of the 2015 UWMP (anticipated in June 2016).

Water Supplies

The City of Banning Water and Wastewater Utilities Department (WWUD) supplies water to the entire City except for a small part in Banning Canyon, which is served by the Banning Heights Mutual Water Company. The City obtains water from three sources: groundwater from the San Gorgonio Pass subbasin of the Coachella Valley Groundwater Basin; recycled water; and water imported from northern California via the State Water Project. Imported water is used for recharging the groundwater subbasin; thus, the City's entire potable water supply enters the City's distribution system from groundwater wells. The City owns 21 wells outright and co-owns three wells with the Beaumont Cherry Valley Water District (BCVWD). A pipeline system connects these wells and tank reservoirs, including an interconnection with BCVWD for the co-owned wells. In order to serve all parts of the city, the system is organized into four pressure zones—naturally by actual elevation differences and with pressure-regulating devices.

Groundwater

The San Gorgonio Pass Subbasin is divided into five subunits termed storage units—the Cabazon, Banning Bench, Banning, Banning Canyon, and Beaumont storage units. The City produces groundwater from all five storage units, which are described below.

- **Banning Storage Unit:** The Banning Storage Unit is located substantially within the city limits, comprising the downtown area and beyond on both sides of Interstate 10. It is about 3.9 square miles, with an average thickness of 600 feet and up to 240,000 acre-feet of capacity.

The City has exclusive pumping rights to the Banning Storage Unit. With the four wells currently installed within this unit, the city has pumping capacity up to 3,500 gallons per minute (gpm), or 5,646 afy. The safe yield is approximately 1,130 afy.

An NOP comment stated that the water well on the south side of Westward Avenue and Woodland Avenue runs “dry” or is improperly maintained. According to the Water Supply Assessment (Appendix J of this DEIR), this well is identified as Well C5 and is an active well that is still adequately pumping groundwater. Based on year end water production reports, Well C5 pumped 634.80 acre-feet in 2012, 758.63 acre-feet in 2013, and 580.91 acre-feet in 2014.

5. Environmental Analysis UTILITIES AND SERVICE SYSTEM

- **Banning Bench Storage Unit:** The Banning Bench Storage Unit is north of the Banning Storage Unit, mostly within the city limits, up to Banning Canyon. It is approximately 5.9 square miles in size, with an average thickness of 30 feet and up to 1,500 acre-feet of capacity.

The City of Banning also has exclusive pumping rights to the Banning Bench Storage Unit. Three wells within this unit can produce up to 3,650 gpm, or 5,888 afy. The safe yield was determined to be 1,960 afy.

- **Banning Canyon Storage Unit:** Extending a few miles north from Banning Bench, the Banning Canyon Storage Unit comprises the canyon area of the city. About 1.6 square miles, it has an average thickness of 161 feet and can store up to about 13,500 acre-feet.

The Banning Canyon Storage Unit is the largest source of water for the city. The San Gorgonio River and a diversion system from the Whitewater River provide recharge for Banning Canyon. Eight wells within this unit can produce up to 8,600 gpm, or 13,873 afy. The safe yield has been determined to be 4,070 afy.

One NOP comment stated that water supply from the Banning Canyon Storage Unit is obtained via the Banning Whitewater Flume, which has been damaged and needs repair. The City is aware of the damaged flume and in February 2013, signed a three-way agreement with the Banning Heights Mutual Water Company and San Gorgonio Pass Water Agency to fund the cost of studies to explore options for alternative methods of conveying water down the San Gorgonio Mountain or repairing the existing flume system.

- **Cabazon Storage Unit:** Underlying the eastern portion of the city, the Cabazon Storage Unit extends east to the City of Cabazon. The Cabazon Storage Unit is about 27 square miles in size, has an average thickness of 350 feet, and can store up to 1,000,000 acre-feet.

The city does not have exclusive pumping rights for the Cabazon Storage Unit. One well within this unit, C-6, can produce up to 900 gpm, or 1,452 afy. The City produced 786 acre-feet from C-6 in 2014. With the installation of additional wells and pipeline, the City could safely extract 2,515 afy.

- **Beaumont Storage Unit:** Located mostly in the City of Beaumont, part of the Beaumont Storage Unit does underlie the western portion of the City of Banning. It encompasses approximately 20 square miles.

Extraction of water from the Beaumont Storage Unit has been adjudicated, with rights shared among the City of Banning, the Beaumont Cherry Valley Water District, the South Mesa Water District, and the Yucaipa Valley Water District. Five wells within this unit, plus the City's share of three additional wells, can produce up to 7,650 gpm, or 12,340 afy. The judgment has given Banning the right to pump 5,910 acre-feet annually through the year 2014. The basin Watermaster is required by law to reevaluate the safe yield from the storage unit every ten years, and the technical study, Draft-Final 2013 Reevaluation of the Beaumont Basin Safe Yield, dated January 16, 2015, was completed by Thomas Harder & Co., in association with Alda, Inc. The overall safe yield was reduced from 8,650 afy to 6,700 afy.

5. Environmental Analysis

UTILITIES AND SERVICE SYSTEMS

The City purchases SWP water for the purpose of replenishing the Beaumont Basin. The Beaumont Basin Watermaster is required to maintain and validate the water account balances in the basin. To date, the City has not pumped all of what is allotted, and therefore maintains a water account balance forecast to increase from 46,869 acre-feet in 2015 to 76,526 acre-feet in 2035.

Overall, groundwater is forecast to comprise 70 to 71 percent of City water supplies through the 2015–2035 period. Water quality in the San Gorgonio Pass subbasin is excellent (Geoscience 2011). The City has 8 active production wells that are in exceedance of California’s new Chromium-6 standard of 10 parts per billion. The City is currently in the process of developing a plan (i.e., treatment facilities) to maintain compliance with the new standard.

Some irrigation water percolates into groundwater and is available for future use. Return flows from future developments are included in the City’s water supply forecast. Return flows from existing developments are already accounted for in the safe operating yield for the San Gorgonio Pass Subbasin—that is, the maximum amount that can be sustainably pumped without overdrafting the subbasin. Return flows average 2.7 to 2.8 percent of forecast City water supplies through the 2015–2035 period.

Recycled Water

Treated effluent from the City’s Wastewater Treatment Plant is currently discharged to percolation ponds and recharges the San Gorgonio Pass Subbasin; effluent does not currently meet State Department of Health Services water quality requirements for irrigation use. WWUD plans to install a membrane bioreactor in the wastewater treatment plant that could produce 1.5 mgd, or 1,680 afy of recycled water that would meet water quality requirements for irrigation. Recycled water is forecast to comprise 10 to 11 percent of City water supplies through the 2015–2035 period. The City is currently building a recycled water distribution system. Recycled water pipelines have been installed from the intersection of Lincoln Street and 22nd Street west to the City boundary; future pipeline segments will extend from the Lincoln/22nd intersection eastward to the City’s WWTP east of the intersection of Charles Street and Hathaway Street, about 1.4 miles east of the project site.

Imported Water

The City purchases water imported via the SWP from the San Gorgonio Pass Water Agency. SWP deliveries have been reduced in the past few years due to the severe drought conditions affecting the state. The City forecasts that it will purchase 2,595 afy of SWP water through the 2015–2035 period, about 16 to 17 percent of City water supplies. The purchased SWP water would be discharged into spreading grounds to recharge the Beaumont Basin.

Surface Water

Surface water naturally recharges the underground water basin across the region, and most directly by the San Gorgonio River and the Whitewater River diversion. Surface water is not considered a separate water supply source because it only recharges basin storage unit pumping production.

5. Environmental Analysis UTILITIES AND SERVICE SYSTEM

Forecast Water Supplies

Forecast City of Banning water supplies for 2015 through 2035 are shown in Table 5.16-2; data for 2010 are actual supplies.

Table 5.16-2 Forecast Water Supplies, acre feet

	2010 (actual)	2015	2020	2025	2030	2035
Groundwater, San Gorgonio Subbasin, including return flows	8,125	10,461	11,079	11,322	11,590	11,886
Recycled Water	0	0	1,680	1,680	1,680	1,680
Returned Flows from Recycled Water Irrigation	0	0	420	420	420	420
Returned Flows from Potable Residential Irrigation	0	9	18	28	38	48
SWP Imported Water	1,338	608	2,595	2,595	2,595	2,595
Total	9,463	11,078	15,792	16,045	16,323	16,629

Source: Madole & Associates and Encompass Associates 2015 (City of Banning Urban Water Management Plan 2010).

Water Demands

Water use in 2010 in the WWUD service area was 7,586 acre-feet, or 2.47 billion gallons, consisting of about 60 percent residential uses, 25 percent commercial and institutional uses, 10 percent irrigation, 1 percent industrial use, and 1 percent other uses.

Water Use Reduction Targets

Baseline water use pursuant to the 20x2020 Water Conservation Plan was determined to be 315 gpcd. The interim water reduction target for 2015 is 283 gpcd, and the 2020 water reduction target is 252 gpcd. Baseline water use and water reduction targets comprise all water uses, including indoor and outdoor uses and recycled as well as potable water.

Forecast Water Demands

Forecast City of Banning water demands for 2015 through 2035 are shown in Table 5.16-3; data for 2010 are actual demands.

Table 5.16-3 Forecast Water Demands, acre feet

	2010 (actual)	2015	2020	2025	2030	2035
Population	29,603	30,491	36,086	39,842	43,989	48,567
Per Capita Water Use (gpcd)	229	283	252	252	252	252
Residential	4,532	5,663	5,960	6,580	7,266	8,021
Commercial and Institutional	1,908	2,536	2,669	2,947	3,254	3,593
Industrial	95	116	119	131	145	160
Irrigation	939	1,152	1,211	1,337	1,476	1,629
Other	31	106	111	122	135	149
Sales to Other Agencies	82	106	113	125	138	153
Total (afy)	7,586	9,680	10,183	11,243	12,413	13,705

Source: Madole & Associates and Encompass Associates 2015 (City of Banning Urban Water Management Plan 2010).

5. Environmental Analysis

UTILITIES AND SERVICE SYSTEMS

Assessment of Current Supply and Demand

Table 5.16-4 provides an assessment of forecast water supplies and demands. As shown, the City would have a surplus of water supply and would be able to meet future water needs.

Table 5.16-4 Forecast Water Supply and Demand Comparisons, acre feet

	2010 (actual)	2015	2020	2025	2030	2035
Total Supply	37,530	54,824	67,667	76,123	83,824	90,821
Total Demand	7,586	9,680	10,183	11,243	12,413	13,705
Supply Surplus*	29,944	45,145	57,484	64,880	71,411	77,116

Source: Madole & Associates and Encompass Associates 2015.

* The surplus is an accumulation of year-by-year net additions to the Beaumont Basin (not the amount shown being added in that year).

Water Supply Reliability

Forecast water supplies compared to forecast demands over the 2015–2035 period in three conditions: average water years, single-dry water years, and multiple-dry water years, are shown in Table 5.16-5. The data for multiple-dry years are for the third year of three consecutive dry years. As shown, the City expects to have sufficient water supplies to meet demands in its service area in all three conditions.

Table 5.16-5 Water Supply Reliability per Existing General Plan Land Use Designations, acre feet

	2010 (actual)	2015	2020	2025	2030	2035
Average Water Years						
Total Supply	9,552	15,563	15,792	16,045	16,323	16,628
Total Demand	7,586	9,680	10,183	11,243	12,413	13,705
Supply Surplus	1,966	5,883	5,609	4,802	3,909	2,923
Single-Dry Water Years						
Total Supply	N/A	12,043	12,314	12,608	12,928	13,235
Total Demand	N/A	9,162	9,638	10,642	11,749	12,972
Supply Surplus	N/A	2,881	2,675	1,966	1,179	263
Multiple-Dry Water Years						
Total Supply	N/A	12,784	13,038	13,316	13,619	13,926
Total Demand	N/A	7,635	8,032	8,868	9,791	10,810
Supply Surplus	N/A	5,149	5,006	4,448	3,828	3,116

Source: Madole & Associates and Encompass Associates 2015 (City of Banning Urban Water Management Plan 2010).

Water Shortage Contingency Plan

The City of Banning has a water shortage contingency plan for responding to catastrophic water supply interruptions such as a loss of electrical power, an earthquake, pipeline breakage, or any other potential water shortage caused by a disaster or facility failure.

The City has 13 above-ground reservoirs with total capacity of 19.7 million gallons. Nine of the City's groundwater production wells are equipped with emergency generators; those nine wells have a total capacity of 6,850 gpm.

5. Environmental Analysis UTILITIES AND SERVICE SYSTEM

The water shortage contingency plan consists of four stages of water reduction goals for responding to increasingly severe water shortages. The water shortages per stage range from up to 15 percent for Stage 1 to 35 to 50 percent for Stage 4. Water reduction measures are voluntary for Stage 1 and mandatory for Stages 2 through 4. Most of the prohibitions are of outdoor water uses; outdoor use of recycled water is exempt from the prohibitions (Geoscience 2011).

As previously stated in Section 5.16.2.1, Governor Jerry Brown declared a State of Emergency in January 2014 in response to the current, prolonged drought conditions. Executive Orders in April 2014, September 2014, and January 2015 encouraged a concerted effort toward voluntary reductions in water usage statewide. Due to record-low snow pack levels in 2015 and less than desired levels of water use reduction, the governor issued an executive order on April 1, 2015, directing the State Water Board to issue mandatory water reductions, with the goal of achieving a 25 percent reduction in urban potable water use statewide.

The City of Banning was assigned a required water use reduction of 32 percent. The basis of this water reduction is the actual residential water usage for the period July through September of 2014. That level was 181.2 gpcd (residential uses only), and therefore the target is 123.2 gpcd. In addition to the water use reduction targets, the following provisions are also required:

1. Prohibition on using potable water for irrigation of ornamental turf in street medians.
2. Prohibition on using potable water for outdoor irrigation of new home construction without drip or microspray systems.

These emergency requirements are not permanent, but have no expiration date, and depending on climate conditions and actual conservation levels, these requirements could have an extended and indefinite duration.

Demand Management Measures

The City of Banning is in various stages of implementing best management practices (BMPs) for water conservation:

- Residential Plumbing Retrofit: Distribute or directly install high quality, low-flow showerheads, toilet displacement devices (as needed), toilet flappers (as needed), and faucet aerators, where required, to single-family and multifamily residences constructed prior to 1992.
- System Water Audits, Leaks Detection and Repair: System water losses on average are approximately 6 to 10 percent of total water produced; the City's goal is that system losses be 10 percent or less of total supplies in the distribution system. The City currently repairs major leaks to the distribution system as soon as possible, and old leaking pipes are continually being replaced.
- Metering: The City is fully metered for all customer sectors, including meters for single-family residential, commercial, industrial, and all public facilities. The City to date has installed dedicated landscape irrigation meters for the three largest landscape irrigation users in the City (Sunlakes Development,

5. Environmental Analysis

UTILITIES AND SERVICE SYSTEMS

Caltrans, and the City Park system) and is in the process of installing landscape irrigation meters for the City's school district facilities.

- Large Landscape Conservation Programs and Incentives: Provide support and incentives to nonresidential customers to improve landscape water use efficiency, develop evapotranspiration-based water use budgets for 90 percent of accounts with dedicated irrigation meters, and notify such customers of actual consumption compared to their water use budgets.
- High-Efficiency Washing Machine Rebate Programs
- Public Information Programs and School Education Programs
- Conservation Programs for Commercial, Industrial, and Institutional (CII) Accounts: Water use surveys; conservation incentives; and plumbing retrofit with ultra-low-flush toilets and waterless urinals.
- Conservation Pricing: The City has a three-tiered increasing rate structure applying to all customers.
- Conservation Coordinator: The City's Superintendent of Public Works serves as a part-time water conservation coordinator.
- Water Waste Prohibition: The City's Municipal Code requires water conservation and prohibits water waste:
 - Water conservation requirements for landscaping: Sections 17.32.070 et seq.
 - Water conservation in landscaping using xeriscape principles: Section 13.16.030.²
 - Restricting water use during water supply emergencies: Section 13.16.020. (Geoscience 2011)

Water Conveyance

One City water main passes east-west in Westward Avenue along portions of the northern site boundary. A second City water main extends in Westward Avenue between Woodland Avenue and Sunset Avenue near the northwest site boundary. There are also existing water lines in Sunset Avenue, Woodland Avenue, 22nd Street, 8th Street, 4th Street, and San Gorgonio Avenue, as shown on Figure 3-8, *Conceptual Potable Water Master Plan*.

5.16.2.2 THRESHOLDS OF SIGNIFICANCE

According to Appendix G of the CEQA Guidelines, a project would normally have a significant effect on the environment if the project:

² Xeriscape consists of use of drought-tolerant plants in combination with irrigation practices minimizing water loss to evaporation and runoff.

5. Environmental Analysis UTILITIES AND SERVICE SYSTEM

- U-2 Would require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects.
- U-4 Would not have sufficient water supplies available to serve the project from existing entitlements and resources, and new and/or expanded entitlements would be needed.

5.16.2.3 ENVIRONMENTAL IMPACTS

The following impact analysis addresses thresholds of significance for which the Initial Study disclosed potentially significant impacts. The applicable thresholds are identified in brackets after the impact statement.

The maximum number of dwelling units to be allowed in the Specific Plan area is 3,385 units if Planning Area (PA) 9 and PA-16C are not developed as commercial or school uses, respectively, and instead are developed in accordance with their Residential Overlay Alternatives. The City's 2010 Urban Water Management Plan and the water supply assessment prepared for the project analyzes future water demand based on a per capita rate. Therefore, the analysis in this section analyzes a worst case buildout scenario of 3,385 residential units because it would generate the most residents compared to the residential and commercial use buildout scenario.

Impact 5.16-2: The City of Banning forecasts that it would have adequate water supplies to meet water demands at buildout of the proposed Specific Plan. [Thresholds U-2 (part) and U-4]

Impact Analysis:

Project Water Demands

The population increase due to Specific Plan buildout is compared to buildout of the existing general plan land use designations onsite in Table 5.16-6, calculated at the average household size for the City of Banning identified in the general plan. As shown, Specific Plan buildout would result in a net increase of 5,991 in 2035, the horizon year used in the WSA, and 3,857 in 2061, the general plan buildout year.

Table 5.16-6 Net Increase in Population Due to Specific Plan Buildout

	2015	2020	2025	2030	2035	2061
Proposed Specific Plan	0	1,170	2,973	6,679	7,550	7,550
Existing General Plan	0	328	739	1,149	1,559	3,693
Net Increase	0	424	2,234	5,530	5,991	3,857

Source: Madole & Associates and Encompass Associates 2015.

Water Demands Due to Specific Plan Buildout

Using a water demand rate of 141 gpcd, the total project water demand at Specific Plan buildout is approximately 1,411 afy, as shown in Table 5.16-7. The per-capita water demand rate was calculated from the

5. Environmental Analysis

UTILITIES AND SERVICE SYSTEMS

residential water demand estimate in the 2010 Urban Water Management Plan of 0.52 acre-feet per dwelling unit per year, or 464 gallons per unit per day, reduced by 20 percent pursuant to the 20x2020 Water Conservation Plan to 371 gallons per day, then converted to 141 gpcd using the average household size of 2.64 persons.

Table 5.16-7 Estimated Total Water Demand by Specific Plan Buildout, acre feet

Water Use Sector	Average Water Demands as Percent of Total	2015	2020	2025	2030	2035
Population	---	0	1,170	2,973	8,065	8,936
Per Capita Water Use, gallons per capita day	---	141	141	141	141	141
Single Family Residential	67.6%	0	223	567	1538	1704
Multi-family Residential	32.4%	0	107	272	739	818
Commercial/Institutional	0%	0	0	0	0	0
Industrial	0%	0	0	0	0	0
Irrigation	0%	0	0	0	0	0
Other	0%	0	0	0	0	0
Sales to other Agencies	0%	0	0	0	0	0
Total (afy)	0%	0	185	469	1,274	1,411

Source: Madole & Associates and Encompass Associates 2015.

Projected citywide water demand adjusted for population increase due to Specific Plan buildout is shown in Table 5.16-8. Compared to the population estimates used in the 2010 Urban Water Management Plan, the Butterfield Ranch Specific Plan project has been reduced by 525 residential units. In addition, estimated land uses on the proposed project site pursuant to existing general plan land use designations are subtracted so that water demands from such land use projections are not double-counted along with water demands from the proposed project.

5. Environmental Analysis

UTILITIES AND SERVICE SYSTEM

Table 5.16-8 Projected City-Wide Water Demand, acre feet

		2015	2020	2025	2030	2035
Citywide Water Demand without Proposed Project						
Population		30,491	36,086	39,842	43,989	48,567
Less population projections for proposed project site based on existing General Plan; and decrease of 1,386 persons in Butterfield Specific Plan			-328	-739	-2,535	-2,945
Adjusted Population		30,491	35,758	39,103	41,454	45,622
Per capita water use (gpcd)		283	252	252	252	252
Single Family Residential	56.2%	5,440	5,673	6,203	6,576	7,237
Multi-family Residential	2.3%	223	232	254	269	296
Commercial/Institutional	26.2%	2,536	2,645	2,892	3,066	3,374
Industrial	1.2%	116	121	132	140	155
Irrigation	11.9%	1,152	1,201	1,314	1,392	1,532
Other	1.1%	106	111	121	129	142
Sales to other Agencies	1.1%	106	111	121	129	142
Subtotal (afy)	100%	9,680	10,094	11,038	11,701	12,878
Proposed Project Water Demand						
Population			1,170	2,973	8,065	8,936
Per capita water use, gpcd			141	141	141	141
Subtotal (afy)			185	469	1,274	1,411
GRAND TOTAL (afy)			10,279	11,507	12,975	14,289
Difference			96	264	562	584
Additional infiltration recharge due to project			(26)	(66)	(180)	(199)
Additional recycled water available to reduce potable use elsewhere in the city			(33)	(84)	(227)	(252)
Return flows from irrigation (25% of recycled water generated)			(15)	(39)	(106)	(118)
Net Total Water Demand - Project-generated Sources			22	75	49	16

Source: Madole & Associates and Encompass Associates 2015

An NOP comment questioned whether homeowners in the project would be able to grow lawns. The Specific Plan would not regulate landscaping on private residential properties onsite; thus, homeowners onsite would be able to install lawns on their properties. Note, however, that Banning Municipal Code Section 13.16.030 requires all new developments to comply with water conservation provisions that use xeriscape principles such as turf limitations, irrigation techniques, use of mulch, and water-conserving landscaping plans.

5. Environmental Analysis

UTILITIES AND SERVICE SYSTEMS

New Sources of Water Due to Project

As shown in Table 5.16-8, three new sources of water supply would result from the development of Rancho San Gorgonio, including stormwater recharge, recycled water, and return flows from irrigation.

Stormwater Recharge

The project lies over the Banning and Cabazon Storage Units. The project is proposing to implement various techniques that would increase recharge onsite, which at a minimum would limit the decrease in percolation due to development. Furthermore, the proposed infiltration basins, pervious pavement, and other stormwater quality BMPs would result in an increase in recharge, as storm runoff would be captured and retained.

Natural percolation from large storm events is generally not very high in relation to the volume of runoff; however, when a significant portion of that runoff is captured and retained, recharge would be enhanced. An estimate of the average volume of runoff that could be recharged is provided below.

Rainfall exceeds evapotranspiration in Banning for three months of the year—January, February, and December. The total average rainfall during those three months is 8.5 inches, and the total average evapotranspiration during the same months is 5.62 inches. It is assumed that the balance of rainfall, 2.88 inches, infiltrates into soil. Thus, recharge volume on the site is 2.88 inches x 830.8 acres, or 199 acre-feet per year.

Recycled Water from Project Effluent

Recycled water production from project-generated wastewater is estimated at 50 percent of wastewater volume. The project is estimated to generate approximately 839,138 gallons of wastewater per day, or 940 afy (see Table 5.16-1). Thus, recycled water production is estimated to be approximately 419,569 gpd, or 470 afy.

Return Flows from Irrigation

It is estimated that 25 percent of irrigation water would infiltrate into groundwater. Assuming that all of the 470 afy of recycled water that could be generated onsite was used for irrigation, return flows would be about 118 afy. This analysis assumes that slightly over half of that irrigation water would be used onsite—irrigation demands in public areas onsite would be approximately 218 afy, and private areas onsite are assumed to require minimal irrigation. The balance of the 470 afy of project-generated recycled water would either be used for irrigation elsewhere in the City or for intentional groundwater recharge.

Forecast Project Recycled Water Demands

Recycled water is proposed for irrigation uses in the following areas of the site, totaling about 78 acres: Sports Park (PA 10), Confluence Park (PA 11), Neighborhood Park (PA 12), Entry Park (PA 13), miscellaneous linear parks, portions of proposed open space along Smith Creek and Pershing Creek, utility corridors, and streetscapes. Recycled water demand is estimated to be 194,356 gpd, or 218 afy.

5. Environmental Analysis

UTILITIES AND SERVICE SYSTEM

Water Supply Reliability Including Demands from Specific Plan Buildout

Table 5.16-9 illustrates that there would be sufficient water supply to support the proposed project in all cases. The projections in Table 5.16-9 use the three water demand adjustments made in Table 5.16-8 above:

- Proposed project water demands are estimated as 141 gpcd
- The buildout population for the Butterfield Ranch Specific Plan project is reduced by 1,386 persons (525 residential units at 2.64 persons per household)
- Projected population on the proposed project site per existing general plan land use designations is deducted from the total

Table 5.16-9 Water Supply Reliability Including Demands from Specific Plan Buildout, acre feet

	2015	2020	2025	2030	2035
Average Water Years					
Total Supply	15,563	15,792	16,045	16,323	16,628
Total Demand	9,680	10,205	11,318	12,462	13,721
Supply Surplus	5,883	5,587	4,727	3,861	2,908
Single-Dry Water Years					
Total Supply	12,043	12,314	12,608	12,928	13,235
Total Demand	9,162	9,658	10,713	11,795	12,987
Supply Surplus	2,881	2,656	1,895	1,133	248
Multiple-Dry Water Years					
Total Supply	12,784	13,038	13,316	13,619	13,926
Total Demand	7,635	8,049	8,927	9,830	10,822
Supply Surplus	5,149	4,989	4,389	3,789	3,104

Source: Madole & Associates and Encompass Associates 2015 (City of Banning Urban Water Management Plan 2010).

This analysis reflects projected water supplies that the City has physical access to and the legal right to acquire and provide to its residents. The City of Banning has sufficient existing and forecast water supplies to meet projected demands of Specific Plan buildout. To conclude, new water supply sources would not be required to support the project for the following reasons:

- Implementation of water conservation measures required under the 20x2020 Water Conservation Plan and accounted for in the referenced WSA.
- Pending completion of the East Branch Extension Phase II project, expected to be fully operational in early 2016, will bring additional capacity for delivering imported SWP water to the area (SGPWA 2015). Water from that project is included in projections in the referenced WSA.
- The proposed use of recycled water for common area irrigation in the proposed project.
- The proposed recharge of stormwater from the project site into the groundwater basin.

5. Environmental Analysis

UTILITIES AND SERVICE SYSTEMS

Thus, implementation of the Specific Plan would not require the City to obtain new or expanded water supplies, and impacts would be less than significant.

Groundwater Pumping Capacity

The historical low capacity of 28,754 afy exceeds the total forecast City demand of 14,215 afy in 2035. Therefore, there is adequate system pumping capacity, and Specific Plan buildout would not require construction of new groundwater wells.

Proposed Potable Water System

The proposed water system includes a network of water mains in several of the planned roadways (see Figure 3-8, *Conceptual Potable Water Master Plan*). Most of the proposed water mains would be eight inches in diameter, which would provide capacity for both proposed water demands and fire flows. One segment of the proposed water main is in a low pressure area along the east sides of Planning Areas 9, 8A, and 10; therefore, a 12-inch water main would be required to accommodate fire flows. Peak hour water demands and peak day water demands per planning area are shown in Table 3.1-2 in the Master Plan of Water, included as Appendix P of this DEIR. Proposed mains would connect to existing City mains at three locations along Westward Avenue: Sunset Avenue, 22nd Street, and 8th Street. The existing main pressure zone would be sufficient to serve the entire project site. A pressure-reducing valve would be installed at the Sunset Avenue connection to prevent excess pressures.

Prior to building permit issuance, the required water system, including all fire hydrants, shall be reviewed and approved by the City of Banning WWUD and the Riverside County Fire Department prior to the placement of any combustible building materials onsite. Required fire flow, street signs, and all weather surface access roadways would also be reviewed by the Riverside County Fire Department prior to issuance of any building permits.

Water Storage

The project would need to contribute to the expansion of water storage capacity by 2.59 million gallons, which is the sum of:

- Operational storage (25 percent of maximum daily demand)
- Emergency storage (100 percent of average daily demand)
- Fire protection storage (2,500 gallons per minute for three hours)

The additional storage capacity, at an elevation of approximately 2,510 feet above mean sea level, would be required to serve both the proposed project and the City's system. The Specific Plan applicant would be required to contribute a fair share of the costs of planning and building such reservoir(s). The location of the reservoir has not been determined but would be offsite. It is anticipated that the City will determine acceptable locations based upon a pending update to the City's water master plan.

5. Environmental Analysis UTILITIES AND SERVICE SYSTEM

Proposed Recycled Water System

An NOP comment asked whether the project includes a recycled water distribution system. A recycled water distribution system is proposed for the project and would consist of 8-inch diameter mains in several of the proposed roadways onsite and a main extending north offsite in 8th Street about 1,350 feet to an existing recycled water main in Lincoln Avenue. Recycled water would be used for irrigation of common areas landscaping only; irrigation on residential properties would use domestic water. The project would require approximately 548,000 gallons of recycled water storage. The location of the future recycled water reservoir would be determined by the City to optimize the City's recycled water system. As shown in Table 5.16-8, at buildout, a projected 252 afy of recycled water would be available for irrigation uses.

5.16.2.4 CUMULATIVE IMPACTS

The area considered for cumulative impacts is the City of Banning WWUD service area. Many other projects in the City would increase the total development intensity in the City, thus increasing water demands. According to the Southern California Association of Governments' 2016-2040 Regional Transportation Plan/Sustainable Communities Strategy, the City population is forecast to increase to 37,600 by 2040, a 25 percent increase over the 2012 population. The number of households is estimated to increase to 14,000, a 30 percent increase over the 2012 figure. Employment is forecast to increase to 14,200, a 95 percent increase over 2012 employment.

The City estimates that it has sufficient water supplies to meet demands in its service area through 2035, as shown above in Table 5.16-3. Additionally, future projects that meet the definition of "project" under SB 610 (e.g., residential development of more than 500 dwelling units, commercial use of more than 500,000 square feet of floor space, hotel or motel having more than 500 rooms) would be required to determine whether projected water supply for the next 30 years—based on normal, single dry and multiple dry years—would meet the water demand projected for the project plus existing and planned future uses. Projects would also be required to undergo future environmental review through the CEQA process. Therefore, no significant cumulative impact would occur, and project impacts would not be cumulatively considerable.

5.16.2.5 EXISTING REGULATIONS

State

- Senate Bill (SB) 610 (Chapter 643, Statutes of 2001) and SB 221 (Chapter 642, Statutes of 2001): Water Supply Assessments
- 20x2020 Water Conservation Plan
- Governor's Executive Order No. B-29-15.

City of Banning

- City of Banning Municipal Code Section 13.08.050 (Water System Connection Fee)

5. Environmental Analysis

UTILITIES AND SERVICE SYSTEMS

- City of Banning Municipal Code Chapter 13.16 (Water Conservation)

5.16.2.6 LEVEL OF SIGNIFICANCE BEFORE MITIGATION

Upon implementation of regulatory requirements and standard conditions of approval, Impact 5.16-2 would be less than significant.

5.16.2.7 MITIGATION MEASURES

No mitigation measures are required.

5.16.2.8 LEVEL OF SIGNIFICANCE AFTER MITIGATION

Impacts would be less than significant.

5.16.3 Storm Drainage Systems

5.16.3.1 ENVIRONMENTAL SETTING

Regulatory Background

Local

City of Banning Municipal Code

The City of Banning Municipal Code identifies land use categories, development standards, and other general provisions that ensure consistency between the City's General Plan and proposed development projects. The following provisions from the City's municipal code focus on stormwater impacts:

- **Chapter 13.24 (Stormwater Management System).** Regulates non-stormwater discharges to the municipal storm drain; controls discharge to municipal storm drains from spills, dumping, or disposal of non-stormwater materials; and reduces pollutants in stormwater discharges to the maximum extent practicable.
- **Chapter 18.15 (Erosion and Sediment Control).** Requires all individual construction and grading projects to implement measures to ensure pollutants discharged from the site are reduced to the maximum extent practicable and will not cause an exceedance of water quality objectives. Erosion and sediment control plans, systems, and maintenance are required to properly implement the project's water quality management plan or stormwater pollution prevention plan.

Existing Conditions

Four main creeks run through or adjacent to the project site. Pershing Creek runs in a northwest-southeast direction through the majority of the site; Montgomery Creek runs diagonally northwest-southeast through the eastern half of the site; Gilman Home Channel runs adjacent to the eastern boundary along Banning High School and the KOA Campground; all three drainage channels are tributary to the larger drainage,

5. Environmental Analysis UTILITIES AND SERVICE SYSTEM

Smith Creek, which flows in a southwest-northeast direction in the southeastern portion of the site. All creeks are unimproved and in their natural states within the boundaries of the project site. Smith Creek discharges into the San Gorgonio River about 3.8 miles east of the site. Drainage directions in streams onsite is to the east in Smith Creek, to the southeast in Pershing and Montgomery creeks, and to the south in Gilman Home Creek.

The project site is currently vacant with no buildings or structures onsite. Thus, there are no existing storm drains connected to the City's storm drain system.

Additional details regarding existing local surface water and drainage onsite are provided in Section 5.9, *Hydrology and Water Quality*.

5.16.3.2 THRESHOLDS OF SIGNIFICANCE

According to Appendix G of the CEQA Guidelines, a project would normally have a significant effect on the environment if the project:

U-3 Would require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects.

5.16.3.3 ENVIRONMENTAL IMPACTS

The following impact analysis addresses thresholds of significance for which the Initial Study disclosed potentially significant impacts. The applicable thresholds are identified in brackets after the impact statement.

The maximum number of dwelling units to be allowed in the Specific Plan area is 3,385 units if Planning Area (PA) 9 and PA-16C are not developed as commercial or school uses, respectively, and instead are developed in accordance with their Residential Overlay Alternatives. Therefore, the analysis in this section analyzes a worst case buildup scenario of 3,385 residential units.

Impact 5.16-3: Existing and proposed storm drainage systems would adequately serve the drainage requirements of the proposed project. [Threshold U-3]

Impact Analysis: As detailed under Impact 5.9-1 of Section 5.9, *Hydrology and Water Quality*, the proposed project would not adversely impact existing and planned stormwater drainage facilities. The following summarizes the analysis under Impact 5.9-1.

Specific Plan buildup would involve construction of a system of drainage improvements consisting of storm drains and retention-detention basins. Residential lots would drain surface water to adjacent streets, with catch basins at critical locations and low points. Underground storm drains would convey runoff from catch basins to retention-detention basins.

Retention basins capture and infiltrate runoff, and detention basins release runoff downstream at a lower rate than is generated upstream. Most such basins would be located in various planning areas (PAs), and several of them would be within 100-foot setback areas from creeks (see Figure 3-10, *Drainage Master Plan*).

5. Environmental Analysis

UTILITIES AND SERVICE SYSTEMS

The existing drainage pattern would be maintained. Montgomery Creek would be conveyed through the site in an underground storm drain from the northern site boundary to a confluence basin immediately north of Smith Creek. A segment of Gilman Home Channel—from the channel's confluence into Smith Creek northward about 700 feet—would be conveyed in an underground storm drain. The balance of Gilman Home Channel, as well as Smith Creek and Pershing Creek, would be left in their existing conditions.

Low-impact development techniques would be used to minimize stormwater quality impacts. These are anticipated to include pervious pavements, increased landscaping (e.g., parks and green belts), and infiltration basins (e.g., joint use park, infiltration and detention basins).

Peak runoff rates at the downstream end of each of the four streams passing through the project site for existing and post-development conditions show that Specific Plan buildout would increase peak runoff rates in Montgomery Creek only (see Table 5.9-3). Runoff rates in Pershing Creek, Gilman Home Channel, and Smith Creek would be less than existing conditions. Therefore, the project would not require construction of new or expanded drainage improvements downstream of the site. Overall, impacts would be less than significant.

5.16.3.4 CUMULATIVE IMPACTS

Future projects in the Whitewater River Watershed would increase impervious areas and would thus increase local runoff rates at those project sites. Other projects in the region would be required to capture and infiltrate runoff from a two-year storm, and many other projects in the region would be required to limit post-project runoff discharges to no greater than pre-project runoff rates, in accordance with the Whitewater River Watershed MS4 Permit. Thus, no significant cumulative drainage impact would occur, and project drainage impacts would not be cumulatively considerable.

5.16.3.5 EXISTING REGULATIONS

City of Banning

- City of Banning Municipal Code Chapter 13.24 (Stormwater Management System)
- City of Banning Municipal Code Chapter 18.15 (Erosion and Sediment Control)

5.16.3.6 LEVEL OF SIGNIFICANCE BEFORE MITIGATION

Upon implementation of regulatory requirements and standard conditions of approval, the following impacts would be less than significant: 5.16-3.

5.16.3.7 MITIGATION MEASURES

No mitigation measures are required.

5.16.3.8 LEVEL OF SIGNIFICANCE AFTER MITIGATION

Impacts would be less than significant.

5. Environmental Analysis UTILITIES AND SERVICE SYSTEM

5.16.4 Solid Waste

5.16.4.1 ENVIRONMENTAL SETTING

Regulatory Background

State

California Integrated Waste Management Act

California's Integrated Waste Management Act of 1989 (AB 939, Public Resources Code 40050 et seq.) set a requirement for cities and counties throughout the state to divert 50 percent of all solid waste from landfills by January 1, 2000, through source reduction, recycling, and composting. In 2008, the requirements were modified to reflect a per capita requirement rather than tonnage. To help achieve this, the act requires that each city and county prepare and submit a Source Reduction and Recycling Element. AB 939 also established the goal for all California counties to provide at least 15 years of ongoing landfill capacity.

AB 341 (Chapter 476, Statutes of 2011) increased the statewide goal for waste diversion to 75 percent by 2020 and requires recycling of waste from commercial and multifamily residential land uses.

California Solid Waste Reuse and Recycling Act of 1991

The California Solid Waste Reuse and Recycling Access Act (AB 1327, California Public Resources Code Sections 42900 et seq.) requires areas to be set aside for collecting and loading recyclable materials in development projects. The act required the California Integrated Waste Management Board to develop a model ordinance for adoption by any local agency requiring adequate areas for collection and loading of recyclable materials as part of development projects. Local agencies are required to adopt the model or an ordinance of their own.

California Green Building Standards Code

Section 5.408 of the 2013 California Green Building Standards Code (Title 24, California Code of Regulations, Part 11) requires that at least 50 percent of the nonhazardous construction and demolition waste from nonresidential construction operations be recycled and/or salvaged for reuse.

Regional

Riverside Countywide Integrated Waste Management Plan

The Riverside Countywide Integrated Waste Management Plan was approved by the California Integrated Waste Management Board in 1996, pursuant to AB 939. The plan consists of the countywide summary plan, countywide siting element, source reduction and recycling element, household hazardous waste element, and non-disposal facility element. The siting element demonstrates that there are at least 15 years of remaining disposal capacity to serve all Riverside jurisdictions, and the summary plan contains goals and policies the county plans to implement in order to meet and maintain the 50 percent diversion mandates under AB 939.

5. Environmental Analysis

UTILITIES AND SERVICE SYSTEMS

Local

City of Banning Municipal Code

The City of Banning Municipal Code identifies land use categories, development standards, and other general provisions that ensure consistency between the City's general plan and proposed development projects. The following provision from the City's municipal code focuses on solid waste impacts.

- **Chapter 8.52 (Recycling).** Regulates the allocation of adequate space for convenient recycling collection, storage, and loading; assists the City with achieving a 50 percent diversion rate of solid waste through increased recycling and reuse of materials; enables the City to reach waste reduction goals mandated by AB 939.

Existing Conditions

Solid Waste Collection

Waste Management Inc. is the franchise waste hauler for the City of Banning and collects solid waste from all residential and commercial customers.

Solid Waste Recycling and Disposal

The Riverside County Waste Management Department (RCWMD) provides recycling and disposal services for the City of Banning. In 2013, about 98 percent of the solid waste landfilled from Banning was disposed of at three facilities in Riverside County, described in Table 5.16-10: the Badlands Sanitary Landfill near the City of Moreno Valley (3,066 tons); the El Sobrante Landfill near the City of Corona (4,967 tons); and the Lamb Canyon Sanitary Landfill near the City of Beaumont (14,722 tons) (CalRecycle 2014a; Merlan 2015). As shown in Table 5.16-10, these three landfills have residual capacity for additional waste and are estimated to close beyond 2020.

Table 5.16-10 Landfills Serving Banning

Landfill	Nearest City	Permitted Throughput Capacity, Tons per Day	Average Disposal, Tons per Day ¹	Residual Capacity, Tons per Day	Remaining Capacity, Tons ²	Estimated Closing Date
Badlands Sanitary	Moreno Valley	4,000	2,748	1,252	6,478,000	2024
Lamb Canyon Sanitary	Beaumont	5,000	1,947	3,053	6,457,000	2021
El Sobrante	Corona	16,054	1,905	14,149	50,100,000	2045
Total	—	23,054	6,600	18,454	63,035,000	—

Sources: Merlan 2015.

¹ Based on total disposal in 2014

² Remaining capacity as of January 1, 2015 (beginning of the day)

5. Environmental Analysis UTILITIES AND SERVICE SYSTEM

Compliance with AB 939 is measured in part through actual disposal rates compared to target rates; actual rates at or below target rates are consistent with AB 939. Target disposal rates for Banning for 2013, the latest year for which data are available, were 6.1 pounds per person per day (ppd) for residents and 30.7 ppd for employees; actual disposal rates were 4.2 ppd for residents and 29.8 ppd for employees. Therefore, solid waste disposal rates in Banning are currently consistent with AB 939.

There are 36 solid waste diversion programs in the City, including composting, transfer station, household hazardous waste, public education, recycling, source reduction, and programs for special waste materials including tires and concrete/asphalt/rubble (CalRecycle 2014b).

5.16.4.2 THRESHOLDS OF SIGNIFICANCE

According to Appendix G of the CEQA Guidelines, a project would normally have a significant effect on the environment if the project:

- U-6 Would be served by a landfill with insufficient permitted capacity to accommodate the project's solid waste disposal needs.
- U-7 Would not comply with federal, state, and local statutes and regulations related to solid waste.

5.16.4.3 ENVIRONMENTAL IMPACTS

The following impact analysis addresses thresholds of significance for which the Initial Study disclosed potentially significant impacts. The applicable thresholds are identified in brackets after the impact statement.

Impact 5.16-4: Existing Riverside County Waste Management Department solid waste facilities would be able to accommodate project-generated solid waste and comply with related solid waste regulations. [Thresholds U-6 and U-7]

Impact Analysis: The proposed project would either introduce a maximum of 3,385 residential homes or 3,133 units and 101,277 square feet of commercial use in the Specific Plan area.³ RCWMD refers to the California Department of Resources Recycling and Recovery (CalRecycle) website for solid waste generation factors. According to CalRecycle, residential uses have an approximate solid waste generation rate of 12.23 pounds per household per day, and commercial uses have a generation rate of 5 pounds per 1,000 square feet per day (CalRecycle 2013a, 2013b). Table 5.16-11 details the projected amount of waste generated at buildout of the project under both scenarios.

³ The maximum number of dwelling units to be allowed in the Specific Plan area is 3,385 units if Planning Area (PA) 9 and PA-16C are not developed as commercial or school uses, respectively, and instead are developed in accordance with their Residential Overlay Alternatives. If commercial use is developed, the allowed residential development in the Specific Plan area would decrease to 3,133 units.

5. Environmental Analysis

UTILITIES AND SERVICE SYSTEMS

Table 5.16-11 Solid Waste Generation

Land Use	Net Increase, Units/Square Foot	Solid Waste Generation, per day	
		Per unit/1,000 SF ¹	Total (pounds)
All Residential Scenario			
Residential	3,385 units	12.23 per unit	41,399
			Total 41,399 pounds
Residential/Commercial Scenario			
Residential	3,133 units	12.23 per unit	38,317
Commercial	101,277 SF	5 pounds per 1,000 SF	507
			Total 38,824 pounds

Source: CalRecycle 2013a, 2013b.

As shown in Table 5.16-11, the all-residential scenario would generate more solid waste than the residential/commercial scenario. For a more conservative approach, this scenario will be used in the analysis. As shown in Table 5.16-10, the three landfills that serve Banning have substantial residential capacity to accommodate the project-generated 41,399 pounds (20.7 tons) per day. The project-generated waste represents only 0.1 percent of the three landfills' residual capacity (18,454 tons per day), and only a 0.9 percent increase from the three landfills' average disposal per day (6,600 tons per day).

The existing three landfills are anticipated to comply with state requirements of providing at least 15 years of waste disposal capacity for the county. Additionally, the Lamb Canyon and Badlands landfills have expansion capacity potential beyond their closing dates of 2021 and 2024, respectively. Therefore, no additional solid waste facilities or infrastructure are needed to serve the proposed project (Merlan 2015).

Because hazardous materials are not accepted at Riverside County landfills, any hazardous waste generated in association with the project is required to be disposed of at a permitted hazardous waste disposal facility. RCWMD operates permanent household hazardous waste (HHW) facilities that offer service on a regular basis, as well as one-day and two-day HHW collection events throughout the year to provide county residents with a free and environmentally safe way to properly dispose of hazardous household waste (Merlan 2015).

RCWMD is concerned about the quantity of construction and demolition waste that would be generated by the project (Merlan 2015). However, according to the proposed Specific Plan, the project's grading design would balance between cut and fill and remedial grading, and it is anticipated that there would not be any need for offsite export or import. There would be a relatively limited amount of special materials (i.e., sands, gravels, clays) imported to the site for construction. And new building construction practices would incorporate onsite and/or offsite separation of solid wastes, recyclable paper, plastic, glass and metal objects, and compostable organic materials, which would be compatible with municipal recycling services and are designed to achieve the statewide goal of 75 percent diversion of solid waste to landfills (RBF 2015). The site is also vacant and undeveloped; therefore, there would not be any demolition waste generated onsite.

Overall, solid waste impacts of the proposed project would not adversely impact RCWMD's landfill capacities and would continue complying with federal, state, and local solid waste regulations.

5. Environmental Analysis

UTILITIES AND SERVICE SYSTEM

5.16.4.4 CUMULATIVE IMPACTS

The area considered for cumulative impacts to landfill capacity is the RCWMD service area. Using SCAG's household and employment projections for 2040—14,000 households and 14,200 jobs—the estimated citywide solid waste generation in 2040 would be approximately 104,657 pounds per day, or about 52.3 additional tons per day compared to 2012 conditions.

Table 5.16-12 Citywide Estimated Net Increase in Solid Waste Generation

	2012	2040	Net Change, 2012-2040	Solid Waste Generation in Pounds per Day	
				Per unit	Total
Households	10,800	14,000	3,200	10 pounds/unit/day	32,000
Employment	7,300	14,200	6,900	10.53 pound/employee/day	72,657
				Total	104,657

Sources: SCAG 2016; CalRecycle 2013a and 2013b.

As shown in Table 5.16-10, *Landfills Serving Banning*, the three landfills accepting the vast majority of the solid waste from the City have combined residual daily disposal capacity of about 18,454 tons. Therefore, the estimated net increase in solid waste generation would not require the construction of new or expanded landfills. Cumulative impacts would be less than significant, and impacts of the proposed project on solid waste disposal capacity would not be cumulatively considerable.

5.16.4.5 EXISTING REGULATIONS

State

- California Public Resources Code 40050 et seq.: Integrated Solid Waste Management Act of 1989
- California Public Resources Code Sections 42900 et seq.: California Solid Waste Reuse and Recycling Access Act
- Assembly Bill 341 (Chapter 476, Statutes of 2011)
- Title 24, California Code of Regulations, Part 11 (California Green Building Standards Code), Section 5.408

Local

- City of Banning Municipal Code Chapter 8.52 (Recycling)

5.16.4.6 LEVEL OF SIGNIFICANCE BEFORE MITIGATION

Upon implementation of regulatory requirements and standard conditions of approval, the following impacts would be less than significant: 5.16-4.

5. Environmental Analysis

UTILITIES AND SERVICE SYSTEMS

5.16.4.7 MITIGATION MEASURES

No significant adverse impacts were identified and no mitigation measures are necessary.

5.16.4.8 LEVEL OF SIGNIFICANCE AFTER MITIGATION

No mitigation measures are required and impacts would remain less than significant.

5.16.5 Other Utilities

5.16.5.1 ENVIRONMENTAL SETTING

Regulatory Background

State

Energy Efficiency Standards for Buildings

Title 24, Part 6, of the California Code of Regulations contains Energy Efficiency Standards for Residential and Nonresidential Buildings. Title 24 requires the design of building shells and building components to conserve energy. The standards are updated periodically to allow for consideration and possible incorporation of new energy efficiency technologies and methods. On May 31, 2012, the California Energy Commission adopted the 2013 Building and Energy Efficiency Standards, which went into effect on January 1, 2014. Buildings that are constructed in accordance with the 2013 Building and Energy Efficiency Standards are 25 percent (residential) to 30 percent (nonresidential) more energy efficient than the 2008 standards as a result of better windows, insulation, lighting, ventilation systems, and other features that reduce energy consumption in homes and businesses.

California Green Building Standards Code

On July 17, 2008, the California Building Standards Commission adopted the nation's first green building standards. The California Green Building Standards Code (Part 11, Title 24, known as CALGreen) was adopted as part of the California Building Standards Code (Title 24, California Code of Regulations). CALGreen established planning and design standards for sustainable site development, energy efficiency (in excess of the California Energy Code requirements), water conservation, material conservation, and internal air contaminants. The mandatory provisions of the California Green Building Code Standards became effective January 1, 2011.

Appliance Efficiency Regulations

The 2012 Appliance Efficiency Regulations (Title 20, CCR Sections 1601 through 1608) took effect February 13, 2013. The regulations include standards for both federally regulated appliances and nonfederally regulated appliances.

5. Environmental Analysis UTILITIES AND SERVICE SYSTEM

Existing Conditions

Electricity

The City of Banning Electric Utility provides electricity to Banning. Total electricity use in the City in the 12 months between July 2014 and June 2015 was 148.5 million kilowatt-hours (kWh). The City projects that annual electricity demand in the City will increase to about 169 million kWh per year by 2034 (Banning 2015a). Electricity generation sources in 2014 were 62 percent coal, 15 percent geothermal, 9 percent nuclear, 1 percent large hydroelectric, and 13 percent unspecified sources (Banning 2015b). The nearest City substations to the project site are the 22nd Street substation near the interchange of 22nd Street with the I-10 and the San Gorgonio Substation near the intersection of Lincoln Street and San Gorgonio Avenue (Beck 2004).

SCE maintains two easements within the project site. One of these easements is 50 feet wide running east-west through the middle of the site, containing what is believed to be 115 kilovolt (kV) overhead power utility lines and towers. The other easement, in the southeast corner of the site, is 300 feet wide with overhead power lines and towers. SCE has a combined total of 27.4 megawatts (MW) of capacity, which covers the bulk of its power requirements (RBF 2015).

Natural Gas

The Southern California Gas Company (SCGC) supplies natural gas to the City of Banning. Total natural gas supplies available to SCGC are forecast to remain constant at 3,875 million cubic feet per day (MMCF/day) from 2015 through 2035. Total SCGC natural gas throughput is forecast to decline slightly from 2,714 to 2,647 MMCF/day between 2015 and 2035 (CEGU 2014).

A 36-inch-diameter gas pipeline runs underground east-west within a 50-foot-wide easement through the middle of the project site.

5.16.5.2 THRESHOLDS OF SIGNIFICANCE

Although not specifically in Appendix G of the CEQA Guidelines, the following additional threshold is also addressed in the impact analysis: a project would normally have a significant effect on the environment if the project:

U-8 Would increase demand for other public services or utilities.

5.16.5.3 ENVIRONMENTAL IMPACTS

The following impact analysis addresses thresholds of significance for which the Initial Study disclosed potentially significant impacts. The applicable thresholds are identified in brackets after the impact statement.

5. Environmental Analysis

UTILITIES AND SERVICE SYSTEMS

Impact 5.16-5: Existing and proposed natural gas and electricity facilities would be able to accommodate project-generated utility demands. [Threshold U-8]

Impact Analysis:

Electricity

Electricity Supplies

Forecast electricity demands by Specific Plan buildout are approximately 1.84 million kWh per year. Such demand is approximately 1.2 percent of total electricity use in the City between July 2014 and June 2015. Forecast project demands are also less than 10 percent of the forecast increase in electricity demands in the City between 2015 and 2034. The City currently obtains 20 percent of its electricity supply from renewable energy and is expecting to increase renewable electricity use to 77 percent by 2017 (Mason 2015). Overall, the City estimates that it will have adequate electricity supplies to meet project electricity demands, and impacts would be less than significant.

Impacts to Existing Power Lines

An NOP comment received from Southern California Edison (SCE) expressed concerns about possible encroachment into SCE rights-of-way onsite; required fences or barriers around each transmission line tower; and possible design conflicts between SCE power lines and towers and proposed roadway network.

The SCE rights-of-way in the project site would be designated as open space by the Specific Plan as Planning Areas (PAs) 14-A through 14-D (Paseo) and PAs 15-B (Creek/Linear Park) and 17 (Open Space). The Specific Plan would not permit development within SCE rights-of-way. Specific Plan development would include installation of fencing and/or barriers near each transmission line tower at the project proponent's expense. Proposed uses of SCE rights-of-way are subject to SCE review and approval or denial. The design of the proposed roadway system – especially the proposed roundabout at Rancho San Gorgonio Parkway and C Street – would be subject to review and approval by SCE and would be redesigned at the project proponent's expense if the design conflicts with SCE's existing transmission line design.

Additionally, as stated in the Specific Plan, all new public distribution and transmission lines maintained by the City of Banning Electric Utility shall be placed underground throughout the project area. All existing overhead distribution and transmission lines along Westward Street would be relocated or placed underground to accommodate new right-of-way alignment and setback requirements. All streetlight design would also require approval from the City's Electric Utility for future maintenance purposes.

Natural Gas

Natural Gas Supplies

Forecast natural gas demands by project buildout are approximately 8.07 million kBtu per year; that is, about 7.8 million cubic feet of natural gas per year. Such increase is well within forecast SCGC natural gas supplies

5. Environmental Analysis UTILITIES AND SERVICE SYSTEM

over the 2015-2035 period, and project buildout would not require SCGC to obtain new or expanded natural gas supplies. Impacts would be less than significant.

Impacts to Existing Gas Lines

An NOP comment received from SCGC noted that there is an existing 36-inch high pressure natural gas transmission line that traverses the project site. The transmission line is located within Bob Cat Road and goes directly through the site from Sunset Avenue to San Gorgonio Avenue. Future project applicants will be required to coordinate with SCGC if future development requires the abandonment or relocation of SCGC's transmission line.

5.16.5.4 CUMULATIVE IMPACTS

The areas considered for cumulative impacts are the City of Banning Electric Utility's service area for electricity and SCGC's service area for natural gas. Other cumulative development projects in accordance with the Banning General Plan would result in net increases in residential units and nonresidential square feet in each service area. Future projects would be required to achieve more rigorous energy efficiency standards than existing developments in Banning. Therefore, while total numbers of residential units and nonresidential square feet in each service area would increase, energy efficiency per residential unit or square foot is expected to increase. SCE and the SCGC each forecast that they will have adequate electricity and gas supplies, respectively, to meet demands within their service areas. Cumulative development projects in addition to the proposed project would not result in significant cumulative impacts.

5.16.5.5 EXISTING REGULATIONS

State

- Title 24, California Code of Regulations, Part 6: Energy Efficiency Standards for Buildings
- Title 24, California Code of Regulations, Part 11: California Green Building Standards Code
- Title 20, California Code of Regulations, Sections 1601 et seq: Appliance Efficiency Regulations

5.16.5.6 LEVEL OF SIGNIFICANCE BEFORE MITIGATION

Upon implementation of regulatory requirements and standard conditions of approval, the following impacts would be less than significant: 5.16-5.

5.16.5.7 MITIGATION MEASURES

No significant adverse impacts were identified and no mitigation measures are necessary.

5.16.5.8 LEVEL OF SIGNIFICANCE AFTER MITIGATION

Impacts would be less than significant.

5. Environmental Analysis

UTILITIES AND SERVICE SYSTEMS

5.16.6 References

Banning, City of. 2015a, December 10. 2015 Power Supply Integrated Resources Plan.
<http://www.ci.banning.ca.us/DocumentCenter/Home/View/559>.

_____. 2015b, October 2. Power Content Label.
<http://www.ci.banning.ca.us/DocumentCenter/Home/View/224>.

_____. 2009, July. City of Banning Sewer System Management Plan (SSMP).
<http://www.ci.banning.ca.us/DocumentCenter/Home/View/1006>.

_____. 2008, May. Initial Study/ Mitigated Negative Declaration Wastewater Treatment Plant Expansion and Phase I Recycled Water System.
<http://www.ci.banning.ca.us/DocumentCenter/Home/View/473>.

Beck, R. W. 2004, December. 10-Year Electric System Master Plan 2004-2014.
<http://www.ci.banning.ca.us/DocumentView.asp?DID=597>.

California Department of Finance (DOF). 2015, May 1. Report E-5 Population and Housing Estimates for Cities, Counties, and the State, January 1, 2011-2015, with 2010 Benchmark.

California Department of Resources Recycling and Recovery (CalRecycle). 2014a, December 3. Jurisdiction Disposal by Facility. <http://www.calrecycle.ca.gov/lgcentral/Reports/DRS/Destination/JurDspFa.aspx>.

_____. 2014b, December 3. Countywide, Regionwide, and Statewide Jurisdiction Diversion/Disposal Progress Report. <http://www.calrecycle.ca.gov/LGCentral/reports/diversionprogram/JurisdictionDiversionPost2006.aspx>.

_____. 2013a, January 14. Waste Characterization Commercial Sector: Estimated Solid Waste Generation and Disposal Rates. <http://calrecycle.ca.gov/wastechar/wastegenerates/Commercial.htm>.

_____. 2013b, January 16. Waste Characterization Residential Development: Estimated Solid Waste Generation Rates. <http://calrecycle.ca.gov/wastechar/wastegenerates/Residential.htm>.

California Gas and Electric Utilities (CGEU). 2014, July. 2014 California Gas Report.
<http://www.socalgas.com/regulatory/documents/cgr/2014-cgr.pdf>.

Mason, Fred (Electric Utility Director). 2015, May 14. Response to Service Questionnaire. Banning Electric Utility.

Merlan, Jose L. (Urban/Regional Planner II). 2015, May 13. Response to Service Questionnaire. Riverside County Waste Management Department.

RBF Consulting (RBF). 2015, January 26. Rancho San Gorgonio Specific Plan.

San Gorgonio Pass Water Agency (SGPWA). 2015, March 27. Facilities. <http://www.sgpwa.com/facilities.asp>.

Southern California Association of Governments (SCAG). 2016. 2016-2040 Regional Transportation Plan/Sustainable Communities Strategy.
<http://scagrtpscscs.net/Documents/2016/final/f2016RTPSCS.pdf>.

5. Environmental Analysis UTILITIES AND SERVICE SYSTEM

US Census Bureau (USCB). 2015, July 9. Longitudinal Employment-Household Dynamics.
<http://lehd.ces.census.gov/>.

Vela, Art (Acting Public Works Director). 2016, June 1. E-mail correspondence. City of Banning Public Works Department.

5. Environmental Analysis

UTILITIES AND SERVICE SYSTEMS

This page intentionally left blank.